[ Pobierz całość w formacie PDF ]
the topic model can be extended to bring it closer to the richness of human language. Although we
are still far from understanding how people comprehend and acquire language, these examples
illustrate how increasingly complex structures can be learned using statistical methods, and they
show some of the potential for generative models to provide insight into the psychological
questions raised by human linguistic abilities. Across many areas of cognition, perception, and
action, probabilistic generative models have recently come to offer a unifying framework for
understanding aspects of human intelligence as rational adaptations to the statistical structure of
the environment (Anderson, 1990; Anderson & Schooler, 1991; Geisler et al., 2001; Griffiths &
Tenenbaum, 2006b, 2006a; Kemp et al., 2004; Koerding & Wolpert, 2004; Simoncelli &
Olshausen, 2001; Wolpert et al., 1995). It remains to be seen how far this approach can be carried
in the study of semantic representation and language use, but the existence of large corpora of
linguistic data and powerful statistical models for language clearly make this a direction worth
pursuing.
Topics in semantic representation 65
References
Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal
Learning and Verbal Behavior, 22, 261-295.
Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.
Anderson, J. R., & Bower, G. H. (1974). Human associative memory. Washington, DC:
Hemisphere.
Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory.
Psychological Science, 2, 396-408.
Baldewein, U., & Keller, F. (2004). Modeling attachment decisions with a probabilistic
parser: The case of head final structures. In Proceedings of the 26th Annual Conference of the
Cognitive Science Society. Hillsdale, NJ: Erlbaum.
Bartlett, F. C. (1932). Remembering: a study in experimental and social psychology.
Cambridge: Cambridge University Press.
Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial
processing tree modeling. Psychonomic Bulletin and Review, 6, 57-86.
Bigi, B., De Mori, R., El-Beze, M., & Spriet, T. (1997). Combined models for topic spotting
and topic-dependent language modeling. In 1997 IEEE Workshop on Automatic Speech
Recognition and Understanding Proceedings (p. 535-542).
Blei, D., & Lafferty, J. (2006). Correlated topic models. In Advances in neural information
processing systems 18. Cambridge, MA: MIT Press.
Blei, D. M., Griffiths, T. L., Jordan, M. I., & Tenenbaum, J. B. (2004). Hierarchical topic
models and the nested Chinese restaurant process. In Advances in Neural Information Processing
Systems 16. Cambridge, MA: MIT Press.
Topics in semantic representation 66
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of
Machine Learning Research, 3, 993-1022.
Brainerd, C. J., Reyna, V. F., & Mojardin, A. H. (1999). Conjoint recognition.
Psychological Review, 106, 160-179.
Brainerd, C. J., Wright, R., & Reyna, V. F. (2002). Dual-retrieval processes in free and
associative recall. Journal of Memory and Language, 46, 120-152.
Buntine, W. (2002). Variational extensions to EM and multinomial PCA. In ECML 2002.
Buntine, W., & Jakulin, A. (2004). Applying discrete PCA in data analysis. In Proceedings
of the 20th Conference on Uncertainty in Artificial Intelligence (UAI). San Francisco, CA: Morgan
Kaufmann.
Charniak, E. (1993). Statistical language learning. Cambridge, MA: MIT Press.
Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
Collins, A. M., & Loftus, E. F. (1975). A spreading activation theory of semantic
processing. Psychological Review, 82, 407-428.
Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of
Verbal Learning and Verbal Behaviour, 8, 240-247.
Cramer, P. (1968). Word association. New York: Academic Press.
Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in
immediate recall. Journal of Experimental Psychology, 58, 17-22.
Deese, J. (1962). On the structure of associative meaning. Psychological Review, 69,
161-175.
Topics in semantic representation 67
Deese, J. (1965). The structure of associations in language and thought. Baltimore: Johns
Hopkins University Press.
Dennis, S. (2003). A comparison of statistical models for the extraction of lexical
information from text corpora. In Proceedings of the Twenty-Fifth Conference of the Cognitive
Science Society. Hillsdale, NJ: Erlbaum.
Dennis, S. (2004). An unsupervised method for the extraction of propositional information
from text. Proceedings of the National Academy of Sciences, 101, 5206-5213.
Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic word
recognition. Psychological Review, 108, 452-478.
Duffy, S. A., Morris, R. K., & Rayner, K. (1988). Lexical ambiguity and fixation times in
reading. Journal of Memory and Language, 27, 429-446.
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological
Review, 102, 211-245.
Erosheva, E. A. (2002). Grade of membership and latent structure models with applications
to disability survey data. Unpublished doctoral dissertation, Department of Statistics, Carnegie
Mellon University.
Ervin, S. M. (1961). Changes with age in the verbal determinants of word association.
American Journal of Psychology, 74, 361-372.
Fillenbaum, S., & Rapoport, A. (1971). Structures in the subjective lexicon. New York:
Academic Press.
Freeman, W. T. (1994). The generic viewpoint assumption in a framework for visual
perception. Nature, 368, 542-545.
Topics in semantic representation 68
Galton, F. (1880). Psychometric experiments. Brain, 2, 149-162.
Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurrence in
natural images predicts contour grouping performance. Vision Research, 41, 711-724.
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. New
[ Pobierz całość w formacie PDF ]